
N8 9 - 22 3 4 8 *

PERFORMANCE OF LEMPEGZIV COMPRESSORS WITH
DEFERRED INNOVATION

Martin Cohn
Computer Science Department

Brandeis University

INTRODUCTION

The noiseless data-compression algorithms introduced by Lempel and
parse an input data string into successive substrings each

consisting of two parts: The citation, which is the longest prefix
that has appeared earlier in the input, and the innovation, which is
the symbol immediately following the citation. In "extremalll
versions of the LZ algorithm the citation may have begun anywhere in
the input; in lfincrementalll versions it must have begun at a previous
parse position. Originally the citation and the innovation were
encoded, either individually or jointly, into an output word to be
transmitted or stored. Subsequently, it was been speculated by
several authors (2t4,5,7) that the cost of this encoding may be
excessively high because the innovation contributes roughly lg(A)
bits, where A is the size of the input alphabet, regardless of the
compressibility of the source. To remedy this excess, they suggested
storing the parsed substring as usual, but encoding for output only
the citation, leaving the innovation to be encoded as the first symbol
of the next substring. Being thus included in the next substring, the
innovation can participate in whatever compression that substring
enjoys. We call this strategy deferred innovation. It is exemplified
in the algorithm described by Welch(5) and implemented in the C
program compress that has widely displaced adaptive Huffman coding
(compact) as a UNIX system utility.
While compress achieves respectable compression ratios on highly
compressible data (say two-to-one or better), it performs poorly,
compared to theory and to other versions of LZ compression, on

377

,
relatively incompressible data. In the extreme of total
incompressibility, such as uniform i.i.d. or well encrypted data,
compress frequently expands the input by about 45% when the output
word size is 12 bits and by about 90% when the output word size is 16,
to mention two common options.2

I

These figures stand in contrast to LZ realizations without deferred
innovation, where random data are expanded by about 5% for output
words of 12 or more bits. The purpose of this paper is to explain the
excessive expansion, and implicitly to warn against the use of
deferred-innovation compressors on nearly incompressible data.

Suppose a deferred-innovation LZ algorithm operates on a string of b-
bit input characters producing B-bit output words,3 and assume that as
in most implementations the dictionary of citations is initialized
with all the individual symbols of the input alphabet. For an input
string IIx y x z . . . I 1 such an algorithm will output B bits for the
first llxl*, and store I1xytl; then output B bits for I1yl1, and store
llyxll; then output B bits for I1xg1 , and store l r ~ ~ l l - , and so on. In
general, B bits will be output for every position that initiates a
novel pair, that is, a pair not seen earlier. What we shall show in
the next part of the paper is that if the input length is much less
than the square of the alphabet size, the I1typicall1 string of length N
has almost N novel pairs, and therefore the output length must be
almost NB, and the compression ratio almost B/b. Now, when the input
is a string over the alphabet of 256 bytes, the input length would
have to be comparable to 216 to avoid this condition; otherwise the
compression ratio will likely be close to 12/8 = 1.5 or 16/8 = 2.0 f o r
common choices of B. This is just the behavior mentioned above for
the program compress. The lltypicalll string is generated by a uniform

I

In default mode, compress refuses to recode a file doomed to
expansion.

While ideally this output word would be variable in length, it
is easy to show that not much is gained by the complication, so we
shall conform to practice and make the wordlength fixed.

378

independent source over the alphabet, or selected uniformly from
among all the possible strings of length N.

We say an ordered pair of consecutive input symbols is novel if and
only if the identical ordered pair has not appeared earlier in the
input string. Let Si(A,N) be the number of strings of length N over
an alphabet of size A, with a novel pair beginning at position i. The
pair beginning in position i can be repeating, like r l ~ ~ l l , or
nonrepeating, like I1xyIt. Thus Si(A,N) consists of two parts,
according to whether the novel pair at position i is repeating or not;
see Figure 1.

xx

+ i - 1 -

Clearly Sl(A,N) = AN, and

xxx
t + n - i - l +

position i
1.

FIGURE 1

-
Si(A,N) = (A - l)AN-i-lD(A,i - 2) + (A - 1)AN-h(A,i - l),

where D(A,i-2) counts strings of length i-2 containing no llxxtt, and
E(A,i-1) counts strings of length i-1 containing no ll~yvl, while x and
y range over the alphabet. (We assume the indices are nonnegative and
take D(A,O) = E (A , O) = 1 by convention).

Figure 2 shows, for the respective processes (or languages) that
contain no repeating pair IIxxtg or no nonrepeating pair I ~ X Y ~ ~ , the
state diagrams, adjacency matrices, characteristic equations, and the
latters' roots. ..

379

S2 - (A -1)s - (A -1) e2 - AE + 1

2

FIGURE 2

From linear theory,

D (A , k) = d+@ + d-6& and E (A , k) = e+E$ + e-&,

where d+ ,d- ,e+ ,and e, are constants determined by the initial
conditions:

In particular

E+ = A - A - l - @ (A ' 3) , E- = A-1 + @ (A ' 3) ,

e+ = 1 - @(A'2), and e- = @(A'2).

We can now estimate S (A , N) , the total number of novel pairs among all
strings of length N, and A - N S (A , N) , the average number of novel pairs
per string. We underestimate S (A , N) by ignoring D (A , N) , which is
positive. Likewise, since e- and E& are positive, we underestimate by
ignoring them. This leaves the approximation

380

N

i-2
-i+lE

i-1 S (A , N) 2 AN + (A - 1) A " l A

N-2 > AN = (A - l)e+E+ [A N-2 + A N-3 E +...+ E] -

Multiplying and dividing by N - 1 , and using the fact that the
arithmetic mean dominates the geometric mean, we have

(N - 2 1 / 2 S (A , N) 2 AN + (A - l)e+e+(N -1) (A€+)

=(1 - @ (A ")) [AN + (N - l) A N (1 - 1 / A 2) (N - - 2) / 2]

In the limit of large N this last expression is well approximated by

AN + (N - l) A N exp (-N + 2 / 2 A 2) .

Division by AN confirms the claim that the average number of novel
pairs per string of length N remains about N until the string length
exceeds the square of the alphabet size.

A simpler but similar calculation can be used to estimate the expected
number of novel singletons (symbols) in a string of length N . A s

before, let S i (A , N) be the number of sequences in which the ith
symbol is novel. Let that symbol be llxll' , then the previous i-1
symbols may be anything but x, and the succeeding N-i symbols may be
anything at all. Thus

N
and S (A , N) = S i (A , N) . i- l A N - i + 1 Si(A,N) = (A - 1)

i=1

As before, this can be underestimated by the geometric mean to give:

which is asymptotically

NAN exp -(N -1/2A).

Thus the average number of novel singletons (symbols) in a sequence of
length N remains about N until N exceeds the alphabet size. Similar
arguments may be used as well to show that almost all k-tuples will be
novel until the sequence length exceeds the kth power of the alphabet
size.

DISTRIBUTION OF MEMORY CONTENTS

We next consider the distribution of pairs, triples, and higher-order
tuples in the L/Z compressor memory during three regimes: While the
memory is filling but not yet full; when it has just filled; and when
it is full and in equilibrium. Our assumption is still that input
symbols are selected uniformly and independently over some finite
alphabet. Another assumption must be made, regarding possible
deletions from the memory once it has filled. In practice a variety
of deletion strategies have been used, notably l.r.u., whereby the
least-recently used entry is deleted to make room f o r the newest
insertion, In this paper we will usually make the simpler assumption
that the entry to be deleted is chosen randomly from among the non-
singletons. In other words, deletion is random except that the
alphabetic symbols are immune.

Memory Filling

Initially the compressor memory (or dictionary) contains OL singleton
entries, namely the symbols themselves. Each time a match to a

\

382

singleton is found a pair is inserted; should a pair be matched, its
extension to a triple is inserted, and so on. Given the uniform,
independent input assumption, it is clear that the likelihood of
matching a given pair is only l / a times the likelihood of matching a
singleton. Since we are interested mainly in large values of a like
32, 64, 128, 256, we will ignore the possibility of creating
quadruples or higher-order tuples, and lump them with the triples.
Thus the memory at any time contains (Y singles, p pairs, and y others.
Let A be the total number of memory locations, and let p = A - alpha
be the number of locations available for pairs and higher-order
tuples. Then at the time of the tth insertion we have

p + y = t for t < M, p + y = p for t Zp.

The distribution of f3 (hence y) at time t during filling is given by
the formula

where S(t,p) is a Stirling number of the second kind, and a is a (P)
falling factorial of a 3 . The reason is that there are S t,p ways of
choosing a sequence of t symbols which includes exactly p distinct
symbols, and that the identities of those p distinct symbols can be
chosen in exactly CY ways. This count is then divided by at, the
total number of ways of choosing a sequence of t symbols from the
alphabet. Since p is a large number for any reasonable compressor, we
really need the asymptotic distribution in order to analyze the
possibly transient behavior when the memory has just filled, but we
don't know it at this time.

(PI

Transient Period Under L.R.U. Deletion

When the memory has just filled with pairs and higher-order tuples we
speculate that there might be interaction between insertion and
deletion by the 1.r.u. rule that could cause temporary instability.

383

In particular, if the memory size is close to a2 then most of the
earliest arrivals will have been pa rs, and many of the recent
arrivals will be triples, as a result of pairs having been matched and
extended. This suggests a llgradientll from most recent to least recent
shading from triples to pairs. In such a case, under 1.r.u.-deletion,
disproportionately more pairs will be deleted, abnormally increasing
the proportion of non-pairs until the inability to match triples
causes pairs to be recreated and reinserted. The alternation in
proportions of pairs versus higher-order tuples would likely damp
out. This transient behavior has not been confirmed, but is a topic
of ongoing research. The distinction between this hypothesis and the
equilibrium analyses below stems from the 1.r.u. deletion policy,
which makes critical not just the distribution of pairs and non-pairs,
but their arrangement in memory as well.

Equilibrium State and Distribution

Finally we consider the distribution of memory contents and the
compression ratio at equilibrium. We once again invoke the
assumption of random deletion (contrary to the 1.r.u. rule used in the
previous, speculative section). First we solve for an equilibrium
state, that is, a ratio of pairs to non-pairs that is stable, and then
we generalize to an equilibrium distribution of probabilities of
ratios.

Equilibrium State

Suppose that the memory is full, that it contains p pairs (and thus
p - f3 non-pairs) and that a randomly chosen input pair is read. The
probability that the input matches some pair in the memory is p/a2.

The probability that some pair (rather than a triple) is chosen for
deletion is p/p. Since these are independent events, the four joint
probabilities for the change in p are:

384

gain a pair, lose a triple
a 2 - P P - P (+I) . ------ . -----

2 P a

gain a pair, lose a pair
a2 - p P 0 . ------ . -

P 2 a

gain a triple, lose a triple

gain a triple, lose a pair
L

At equilibrium the first and last probabilities must be equal, and we
can solve for P: (Recall that we are ignoring the creation of
quadruples or high-orders).

a2 + p

Using these values we can estimate the compression ratio achieved in
this equilibrium state by compress, which will output B bits (12 by
default) for each 2b bits in a pair can be matched, and will output B
bits for only b bits in when a pair cannot be matched. The ratio at
equilibrium is thus

From this expression we would expect compress in default mode (with
b=8, B=12) to have Peq = 1 . 4 2 , which is quite close to experience.

385

Equilibrium Distribution

We consider next the equilibrium distribution governing the number of
pairs present in the compressor memory. Again we assume that the
probabilities of creating quadruples, quintuples, and so on are
negligible, so that they can be lumped together with the triples. A s

usual, the singletons are permanent memory residents.

With memory size p consider the random variable p describing the
number of pairs present. p ranges from 0, when the memory has no
pairs, to min (pp2) when either the memory is full of pairs, or all
pairs are present. A s each parse of the uniform, independent input is
made, p may increase by 1 or decrease by 1 (except at the extremes) or
stay the same, with the respective probabilities given in Section C1.
above4. This gives us a Markov process with transition matrix

- -
Ti, j I i i

(1 - --)(I - --) j = i + 1,
a2 P

otherwise. Lo

Because this is a connected Markov process, it has an equilibrium
distribution p1 which satisfies pT = p, or (pT)i = pi. We show in the
Appendix that

This distribution was erroneously described in the Snowbird
talk as an Ehrenfest modell. A s we shall see, it is rather like a
componentwise product of two Ehrenfest processes.

386

For a very simple example, let a2 = 4 , p = 5 . Then

T =

- -
0 2 0 0 0 0
1 8 1 2 0 0
0 4 1 0 6 0
0 0 9 9 2
0 0 0 1 6 4
- -

1 1 1

16 31 126
p(i) = --(1,4,6,4,1) x --(i,5,io,io,5) = --- (1,20,60,40,5).

This means that asymptotically the distribution is the product of two
Gaussian distributions, with relatively displaced means unless a2 =)I.

ACKNOWLEDGEMENT

I am grateful for conversations on this work with Ira Gessel and Jim
Storer. Dana Goldblatt conjectured the dictionary behavior that led
to the study of pair/nonpair distributions.

387

APPENDIX

i - 1 i - 1

a2 P
+

i i

Q.E.D.

0

c 3 388

REFERENCES

Feller, William, "An Introduction to Probability Theory and its
Applications", John Wiley & Sons Inc., New York, Vol.1, 1950.

Miller, V.S. and M.H. Wegman, 'Variations on a Theme by Lempel and
Ziv", Combinatorial Algorithms on Words, Springer-Verlag
(A. Apostolico and Z. Galil, editors), pp. 131-140, 1985.

Riordan, John, "An Introduction to Combinatorial Analysis" , John
Wiley & Sons, Inc., New York, 1958.

Storer, J.A. and T.G. Szymanski, "Data Compression Via Textual
Substitution", J.ACM 29, 4, pp. 928-951, 1982.

Welch, T.A., "A Technique for High-Performance Data Compression",
IEEE Computer 17, 6, pp. 8-19, 1984.

Ziv, J. and A. Lempel, "A Universal Algorithm for Sequential Data
Compression", IEEE Trans. Inf. Theory IT-23, 3, pp. 337-343,
1977.

Ziv, J. and A . Lempel, "Compression of Individual Sequences Via
Variable Rate Coding", IEEE Trans. Inf. Theory IT-24, 5, pp.

530-536, 1978.

389

